Morphology and magnetic characterisation of aluminium substituted yttrium-iron garnet nanoparticles prepared using sol gel technique.
نویسندگان
چکیده
Aluminum substituted yttrium iron garnet nano particles with compositional variation of Y(3.0-x) A1(x)Fe5O12, where x = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 were prepared using sol gel technique. The X-ray diffraction results showed that the best garnet phase appeared when the sintering temperature was 800 degrees C. Nano-crystalline particles with high purity and sizes ranging from 20 to 100 nm were obtained. It was found that the aluminum substitution had resulted in a sharp fall of the d-spacing when x = 2, which we speculated is due to the preference of the aluminum atoms to the smaller tetrahedron and octahedron sites instead of the much larger dodecahedron site. High resolution transmission electron microscope (HRTEM) and electron diffraction (ED) patterns showed single crystal nanoparticles were obtained from this method. The magnetic measurement gave moderate values of initial permeability; the highest value of 5.3 was shown by sample Y3Fe5O12 at more than 100 MHz which was attributed to the morphology of the microstructure which appeared to be homogeneous. This had resulted in an easy movement of domain walls. The substitution of aluminum for yttrium is speculated to cause a cubic to rhombodedral structural change and had weakened the super-exchange interactions thus a fall of real permeability was observed. This might have created a strain in the sub-lattices and had subsequently caused a shift of resonance frequencies to more than 1.8 GHz when x > 0.5.
منابع مشابه
Synthesis and characterization of Alumina (Al2O3) nanoparticles prepared by simple sol-gel method
Alumina is one of the most widely used ceramic materials as catalysts, catalyst supports and absorbents, and also wear resistant coating. This study focused on fabricating and characterizing of alumina ceramic nanoparticles fabricated using new and simple sol-gel method. Aluminium oxide (Al2O3) nanoparticles were synthesized by iron (III) nitrate 9-hydrate as precursor. Physicochemical properti...
متن کاملSynthesis and characterization of Alumina (Al2O3) nanoparticles prepared by simple sol-gel method
Alumina is one of the most widely used ceramic materials as catalysts, catalyst supports and absorbents, and also wear resistant coating. This study focused on fabricating and characterizing of alumina ceramic nanoparticles fabricated using new and simple sol-gel method. Aluminium oxide (Al2O3) nanoparticles were synthesized by iron (III) nitrate 9-hydrate as precursor. Physicochemical properti...
متن کاملاثر جانشانی آنتیموان بر ویژگی ساختاری و مغناطیسی گارنت ایتریوم آهن تهیهشده به روش سل ژل
In this study, antimony substituted yttrium iron garnet with a composition of (x = 0, 0.1, 0.2) nanoparticles were fabricated by Sol-Gel method. Garnet phase formation were investigated by X-Ray diffraction (XRD) and Fourier transform infrared spectroscopy (Far FT-IR). X-ray diffraction results show that the samples in addition to garnet phase has impurity phases of YIP, α-Fe2O3 and Sb2O4 whi...
متن کاملبررسی ساختاری و مغناطیسی نانوذرات گارنت ایتریوم آهن جانشانی شده با پراسیودیمیم
Praseodymium ion (Pr3+) substituted yttrium iron garnet nanoparticles PrxY3-xFe5O12 (x = 0.0, 0.1, 0.2, 0.3, 0.4) were fabricated by the sol-gel method. X-ray diffraction (XRD) patterns confirmed the pure garnet structure for all samples. The chemical bonds and the garnet phase were studied by using Far-FTIR. The magnetic hyperfine parameters were obtained by MÖssbauer spectroscopy and confirme...
متن کاملاثر جانشانی آلومینیوم بر ویژگیهای ساختاری و مغناطیسی نانوذرات گارنت ایتریوم آهن تهیه شده به روش سل- ژل
In this study, aluminum ion (Al3+) substituted yttrium iron garnet nanoparticles Y3AlxFe5-xO12 (x = 0.0, 0.2, 0.4) were fabricated by the sol-gel method. X-ray diffraction (XRD) patterns confirmed the pure garnet structure for all samples. The chemical bonds and the garnet phase were studied by using FT-IR, Far-FTIR. The cation distribution and the magnetic hyperfine parameters were obtained by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of nanoscience and nanotechnology
دوره 11 3 شماره
صفحات -
تاریخ انتشار 2011